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Pulsed Coilgun Limits

Stephen Williarnson and Alexander (Sandy) Smith
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ

Abstract-The design of coilguns is commonly based on a ‘try
and see’ basis using am analytical model to ascertain its
performance.  This paper examines the use of formal
optimisation techniques to explore the performance limitations
of pulsed coilgun technology. The optimisation procedure is
constrained by the material, mechanical and thermal
properties and seeks to determine the coil geometry that
achieves the maximum velocity for a given payload. The paper
illustrates the maximum velocity achievable for several
different payloads as a function of the coilgun length and bore
diameter.

I. INTRODUCTION

Though conceptually simple, coilguns [1, 2, 3, 4] are
extremely difficult to design. Present design is largely based
on an analytical ‘cut-and-try' approach, in which the
performance of a trial design is predicted and design
parameters adjusted until performance goals are met.
Design procedures which make use of formal optimisation
techniques have been proposed [5], but despite recent
developments they are still enormously expensive to run and
give little or no insight into the interdependence of design
parameters and performance. Furthermore such procedures
can give no useful insight toward performance limits on
coilguns. The purpose of this paper is to address this issue.

II. THEORETICAL DEVELOPMENT
A. Kinetic energy
The work contained in this study is based on a simple
system of two coaxial air-cored coils carrying currents i and

iy respectively, shown in Fig. 1. The force developed
between these coils is [6] ‘

F=igiy 94 )

where M is their mutual inductance. For filamentary coils

M =M(1),12,2) = loyTi1 {(‘E"‘k) K(k) f‘%E(k)} )
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where K= 112

=2 3)
22 + (r1+r2)2 ( )
K(k) and E(k) are complete elliptic integrals of the first and
second kind. If the outer coil is stationary and the inner coil
is free to move, the work done when it moves from z = z; to

z2=129,is ‘

Z
W= fi,izédhz‘—dz @)
7

Assume, now, that i} and iy are held constant at their
maximum values (which may depend on thermal or
mechanical limits), then equation 4 becomes

W =iyi; [M(z2) -M(z)))] )

Let us assume that all of this work is converted to kinctic
energy (i.e. ignore mechanical losses, and joule losses in the
armature coil) then maximum kinetic energy is achieved
when the bracketed term in equation 5 is maximised. The
maximum and minimum values of M(z) occur at z = 0
and z = oo respectively. M(e0) = 0, therefore

KEpo=i112MO) ©)

Fig 1 - Filamentary coaxial coils

Equation 6 shows that maximum kinetic' energy will be
obtained if the coils are initially co-planar and the currents
in them are held at their maximum permissible value
throughout. In a real (i.e. physical) system the currents
cannot be instantaneously switched to, and held at, their
maximum values. The current in the armature (i.c. the inner
coil), in particular, will vary with time. The purpose of this
paper, however, is to determine absolute performance
ceilings, and under that condition the assumption of constant
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Fig2 - Thin pancake coils

maximum current is justified. In Fig. 2 the filamentary (coils
of Fig. 1 have been replaced by thin pancake coils.JThe
general expression given in equation 6 must still be valid,
although the mutual inductance must now be obtaine}d by
taking an average over the radial width of the coils. - If the
coils have Ny and N, turns, respectively, and negligible
axial length |

ity ¢
KB =1 NN = | fM«»drldrz Q)
2 n n-y

As a next step assume that the armature coil now has
finite length £, as shown in Fig. 3. Under the con(stam
maximum current assumption it is a straightforward | tter
to show that maximum kinetic energy is obtained when the
initial position of the armature coil is symmetrical with
respect to the pancake coil, as shown in that figure. | The
integration must now also take place over the length of the
armature ; -

1]
i+t 2 \ e
[ ] ] M@,z ddsd

Kme= il iz N1N2

R
2 _
‘ ®
19 NyN, -
titzéy
4 |
rp+ty
where S = | f }M(rl,rbz) drydr; dz (10)
n - _ 4
: 2

The final stage in the development of the model fis to
permit the stator coils to have finite length. To do this it is
necessary to consider Fig. 4, in which all the stator coils to
the left of the centre-line of the armature are ener%‘ised,
whilst all those to the right are not. As the armature moves
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Fig3 - Armature coil with finite length

(to the right in Fig. 4) current is assumed to be
instantaneously switched into the armature coils that lie on
this centre-line. This may be regarded as equivalent to
sequentially exciting a row of incremental 'pancake' coils in
the stator, as the armature centre¢ passes them. Each
additional incremental excitation produces a contribution to
the maximum kinetic energy given in equation 9. That
equation is therefore valid for the complete launcher,
provided Ny is now interpreted as the total number of turns
in the stator.

Equation 9 is still inconvenient for use, because it contains
currents and turns numbers, which may often be scaled to
suit supply conditions. To circumvent this, we note that

iNp =Jg kyty ¢4 an

ipNy =T katy by - (12)
where J} and I are the current densities in the stator and
armature conductors respectively. k; and ky are
corresponding fill factors (ie' ratio of copper section to
winding section in a coil). £ j and £ 5 are the axial lengths
of the stator and armature.

Substituting 12 and 11 into 9,

KEpex = JaiJeaaki ko 445 (13)

If it is assumed that an inert projectile of mass m is

accelerated from rest by an armature of mass oum to velocity
v, then the kinetic energy gained is

KE = 1(1+a) mv? (14)

where « is the ratio of armature mass to the projectile mass.
Equating equations 13 and 14, to obtain the maximum
velocity

Q+a)ymvi,, =21 4T,k k£, S (1%)



Centre-line of
'/ armature

Excited H Unexcited

stator coils | staz coils
eeReee T " & 1 1 | 1]
| 00 Dz

Armature

-x-x.x.n
conductor i

7

JRORLXAX 3

Armature______ "

mandrel
S e )4

(oleldelole _j_i_i\_i_i_L_L_E}

Non-magnetic
non- conducting
support tube (barrel)

Fig4 - Stator coil and armature excitation
B. Thermal limits

Although the above analysis assumes that once excited,
the currents in the stator windings persist, the mutual
inductance between two coils falls rapidly as the distance
between them increases. We may safely assume that even in
this ideal coil gun, the current in a given stator coil will be
reduced to zero when the armature has passed it by a
distance equivalent to two or three diameters. Furthermore,
being stationary the stator coils are more readily cooled, if
necessary. It will therefore be assumed that thermal limits
will not be approached on the stator. The armature currents,
on the other hand, are required to persist for the entire time
that the armature is inside the bore, and for a short distance
(again two or three diameters) beyond the end of the bore.
Assuming that the armature heats adiabatically, the rate of
temperature rise in the armature copper is

(16)

is the specific heat of copper, p its resistivity, and d its
density. As the current in the armature has been assumed to
be constant, the temperature rise obtained in time T is given
by

g = J0pT
dC,
where it is assumed that the parameters are not temperature
dependent.

an

C. Mechanical Stresses
1) Stator Coils: The axial flux density at the inside surface
of the stator is obtained by the long solenoid approximation
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as By = uoJakity (18)
The radial stress that this produces is
1 22 _ M 2
P, =—B; = = Tkt 19
s = T z1 2[clll] (19)

Using the standard approximation for a long solenoid that
the magnetic field outside the solenoid is negligibly small,
the radial stress there is also approximately zero. The hoop
stress in the stator varies in magnitude across the radial
thickness of the stator, with the maximum occurring at the
inner surface. The magnitude of this maximum is

P' (rf + (rl + tl)z)
g, =
max 1,21, +t;)

0

This maximum stress must not exceed the yield strength of
copper (Gy)
2 2
Ps (l'l +(l’1 +t1) )

oy 2 21
y t1(2l'l + tl) ( )
Substituting from equation 19 into equation 21
mt(F+m+w?)
oy (Ter ki) (22)
2Q2r +t)

This equation may be re-arranged to determine the
maximum current density in the stator coils

] 1 20/2r 4+t
1 =% B
TR oy (7 40

ii. Armature. Assuming that the clearance between the
stator coils and the armature coils is small, the flux density
at the outer surface of the armature is the same as that at the
inside surface of the stator (i.e. B;j in equation 18). The
corresponding radial stress (i.e. Pg in equation 19) therefore
also applies. The axial flux density at the inner surface of
the armature is given approximately as

23

By = oo ki ty — Ji2katp) (¢2))
The radial stress acting on the inner surface of the armature

is therefore
1

Py=—

* 2u,
The hoop stress in the armature varies across its radius with
maximum stress appearing on either the inner or outer
surfaces, depending on the relative magnitudes of P, and Pg.

o 2
3= % [akity - Jeakata] (25)
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For the inner surface, |ojy| < oy,

2Psr22 - Pa (1'2 - t2)2 + 1'22)

Cin = (26)

[r2 - t’2]2 - 1'22

For the outer surface, similatly |c,¢l < oy, Where

P, (r22 +(ry- tz)z)—ZPa (ra- tz)2 ,
Tt = — @7
-] -5

The armature also imparts the accelerating force to|the
projectile. Assuming that this force is imparted through) the
cross-section of the armature copper, then

myv

28
T )

Pt7r(r22 - (12~ t2)2) =

P, the axial stress, must be less than the yield stress of
copper, therefore
mv

n(rzz - (r2- tz)Z)T

£ o (29)‘

y

II1. PROCEDURE

The maximum armature current is assumed to be fixed by
thermal considerations (via equation 17), whereas | the
maximum stator current is determined by limitations on the
hoop stress in the stator coils (via equation 23). Substituting
from these two equations into equation 15

[ 20,(en+t)  [dC,0
Vﬂotl(f12+(f1+t1)2) AT

(+a)my2,, =2 k, £,S (30)

As it is necessary for the integrity of the armature to be
maintained only for the duration of the acceleration, the time
T taken for the armature copper to reach its melting
temperature (6) may be equated to the time taken for the
armature to pass along the barrel,

i.e. El = —2—

Substituting equation 31 into equation 30, to eliminate T,
and rearranging

31)

1/3
4o, (21, + 1;) £,dC, K5 S

2
Uty (f12 +(r+1) ) pm? (1+a)?

(32)

Vinax =

Equation 32 may be used to calculate the maximum
velocity obtainable from a launcher of given dimensions (ry,
1y, 11, ty, and £ fixed) for a projectile of given mass (m)
and armature of given mass (wm). When this velocity has
been defermined equations 23 and 17 enable the
corresponding stator and rotor current densities, J.1 and Jz
to be determined. These, in turn, enable the radial stresses
produced on the outside of the armature to be calculated via
equation 25 and the armature hoop stress limits to be
checked via equations 26 and 27. Finally the transit time is
obtained through equation 31, and the axial stress checked
via inequality 29.

The starting point of the procedure by which performance
limits are determined is to assume

(1) Bore (Dy)

(i) Axial stator length (£1)

(iii) Projectile mass (m)

(iv) Thickness for the launch tube or barrel (i)

These are the principal independent design variables. It is
assumed that the radial clearance between the armature and
bore is small, and this is set to 0.5 mm in all that follows.
This has the effect of fixing ry, the outside radius of the
armature (fig.2)

Dy, = 21, +0.001 33)

The stator coils are assumed to fit snugly on to the outside of

the barrel, and this determines 1y
Dy + 2t =12n1

The parametiers which remain are the stator thicknejss tp,
the armature thickness (tp), and the overall weight of the
armature (om). The axial length of the armature (£ 2)is
obtained from the equation for the armature mass '

(39

The goal is to determine the coil thicknesses (t] and ty)
that produce the maximum projectile velocity, for a given
weight of armature (oum), without exceeding the material
stress limits. This may conveniently be achieved using a
standard multivariable optimisation procedure, in which the
material constraints are imposed through appropriate penalty
functions. The optimisation procedure undertakes a multi-
dimensional search to determine the maximum projectile
velocity without violating any of the material constraints
specified in Table 1.- In most instances, the maximum
velocity corresponds to one or more of these constraints
being met. It is, however, difficult in this situation to make
a general statement on which of the various material limits is
critical to a particular coilgun with a certain armature weight
{am). Relaxation of the material constraints, however, will
lead to improvements in the maximum velocity. The triple

ER))



integral S, given by equation 10, may be evaluated efficiently
for each set of design variables generated by the optimisation
subroutine by means of Gaussian integration. The elliptic
intcgrals present in equation 2 are evaluated using
polynomial expansions [7].

IV. RESULTS

Numerical studies have been made for 50 mm and 150
mm bore coilguns, launching payloads of 1 kg, 2 kg, and 25
kg (150 mm bore only). The assumed physical constants
used in the simulations are defined in Table 1. The
optimisation procedure determines a new set of coilgun
dimensions (tjand 1) and the axial length indirectly from
equation 35 for each and every armature weight (oum) to
maximise the projectile velocity. For brevity, these are not
included in the results.

Figure 5 shows the maximum velocity achievable with a 50
mm bore, and a projectile of 1 kg . The abscissa gives the
weight of the armature (= am, where m is the mass of the
electromagnetically inert projectile). The figure shows that
for each length of launcher there is a definite armature mass
beyond which the performance deteriorates. The maximum
kinetic energy imparted to a 1 kg projectile is 150 kJ, 330
kJ, and 442 kJ by launchers of 2 m, 4 m, and 6 m length,
respectively. These maximum energies are approximately
proportional to the length of the launcher. Figure 6 shows
Vmax versus o for a 50 mm bore launcher, and a 2 kg
projectile. The curves in this figure are essentially similar to
those in Fig. 5, but the maximum kinetic energies achievable
are now 178 kJ, 392 kJ, and 517 kJ for launchers of 2 m, 4
m, and 6 m. These are significantly different from the
corresponding maximum energies achieved with a 1 kg
projectile, suggesting that for a given bore and launcher
length, there will be an optimum projectile mass that will
maximise kinetic energy. The kinetic energies are again
approximately proportional to launcher length.

Figures 7 and 8 repeat the above exercise for a launcher of
150 mm bore diameter. The maximum kinetic energies
achievable with a 1 kg projectile are 165 kI, 391 kJ, and 632
kJ, whereas with a 2 kg projectile they are 220 kJ, 563 kJ,
and 937 kJ. These values correspond to launcher lengths of
2 m, 4 m, and 6 m respectively. It is clear that at this
increased diameter the approximate linear relationship

between launcher length and kinetic energy is no longer -

valid. Figure 9 shows vy, versus o for a 25 KJ projectile.
The kinetic energies achieved with 2 m, 4 m, and 6 m
launchers are 523 kJ, 1.30 MJ, and 2.27 MJ, respectively.
Figure 10 gives a comparison between 2 m launchers of
differing bore diameter. This figure indicates that with a
short launcher and relatively light projectiles there is little to
be gained by increasing the bore diameter. Fig. 11 shows
that if the length of the launcher is increased to 6 m, then

increasing the bore diameter begins to give a more definite

improvement in capacity.
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All of the proceeding performance graphs relate to launch
tubes of zero width. In a practical application it is expected
that the coils will be mounted on the outside of an inert fly-
way tube of finite thickness. The effect of the presence of
such a tube is investigated in Figs. 12 - 15. Fig. 12 indicates
that the launch tube will not produce a deterioration of the
performance of a 2 m long gun of 50 mm bore, provided a
heavier armature is employed. A 6 m long gun of the same
diameter, however, will suffer from some deterioration in
performance, as shown in Fig. 13. Figs. 14 and 15 show that
the presence of the launch tube will produce little
deterioration in the performance of a 150 mm bore launcher.

V. DISCUSSION

This paper has made use of an idealised coil gun to
explore the limits of pulsed coilgun performance. The
principal idealising assumptions that have been made are:

(i) Current switches instantaneously into the stator coils;

(ii) Current in the armature coil is sustained throughout

the launch;

(iii) Friction and aerodynamic drag are negligible;

(iv) Material properties remain constant throughout the

launch.

It is difficult to assess the general effect of relaxing all of
these assumptions - except to state that a reduction in
performance will be obtained. It would be possible,
however, to investigate specific scenarios using the model
developed in this paper as the foundation of the
investigation.

The 'fill factors' ky and ky have been set at 0.5 to obtain
the results presented in the paper. Higher fill factors might
prove possible in practice. This would have a beneficial
effect on performance. Again, such benefits are difficult to
assess, because of the stress limits discussed in section 2.3.2.

The launcher configuration considered in this paper is one
in which the armature is pushed by the stator excitation. An
alternative form of launcher uses a push/pull configuration
in which stator currents ahead of the armature pull it while
those behind push it.  Whilst such a configuration has not
been examined by the authors, they believe that the
techniques developed in this paper are eminently suitable for
such a purpose.

- Density of copper ) 8933 kg m™
Stator fill factor &l1) 0.5
Armature fill factor k2) 0.5
Specific heat of copper (Cp) 430Jkgt k1
Maximum temperature rise ©) 1600K
Resistivity of copper ® 6.0x108 Qm
Yield strength of copper (o-y) 6.0 x 107 Nm™

TABLE I : MATERIAL AND OTHER PROPERTIES
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