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Abstract: The tubular linear induction motor is
seen as an alternative to rail guns, whose
maximum speed is limited by current collection
problems. By reducing the task of determining the
maximum speeds attainable by induction to first-
order approximations, the author shows that the
ultimate limitations are set by the physical proper-
ties of copper: specific heat, resistivity, density,
melting point and yield stress. The speeds attain-
able under these constraints are then calculated in
terms of track length and missile mass.

1 Introduction

Electromagnetic launch technology during the 1970s and
1980s was largely concentrated on rail guns, that is to say
devices in which the moving conductor slides between a
pair of conducting rails from which it collects direct
current as it is accelerated. At the electromagnetic launch
conference held in London in 1991 [1] opinion seemed to
indicate that 7 to 8 km/s was the highest velocity that
could be achieved by rail guns. Destruction of the track
by burning as a result of arcing at the sliding contacts
was the principal limitation.

The alternative type of launcher is the induction accel-
erator, requiring no electrical connection to the moving
member. The most popular of these is the tubular type, in
which the primary consists simply of a row of coaxial
coils. The name ‘coil gun’ has been adopted to describe
this class of linear induction motor.

International interest in launchers appears to be
focused on two main aspects; the attainment of velocities
of the order of 6.0 km/s in large masses and the attain-
ment of much higher velocities in masses perhaps as
small as 2 g. Elliott [2] gives a detailed design for a
tubular launcher for a mass of 2 kg to reach 3 km/s in a
distance of only 5 m. Driga and Weldon [3] give a design
for a multistage coil gun to accelerate a 14 kg mass to
6.0 km/s in a distance of 192 m. Sandia National Labor-
atories at Alberquerque, New Mexico, report experimen-
tal work on masses of only 11g [4]. NASA reports
include even more ambitious targets for earth-to-space
launchers requiring velocities of 11 km/s [5]. The
requirements for large and small masses call for two very
different approaches.

A companion paper [6] deals with the large-mass
application where one solution emerges as a double-sided
sandwich motor with no iron core. Although the target
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velocity for this particular load did not reach the fron-
tiers of what was possible, there were signs that pointed
to the steps to be taken in the event of that particular
topology failing, one of which was to be found in the
value of the end-winding factor.

As field velocities are increased, a fairly obvious
limitation is likely to be leakage reactance, which in turn
involves skin effect. There comes a point therefore where
further increase in velocity must be achieved by increas-
ing pole pitch rather than by increasing frequency. In
conventional machines this involves increasing the length
of the end windings and hence their resistance and
leakage reactance. In the companion paper [6] the target
speed was 1.2 km/s. and even using a new technique of
diamond-shaped surface windings, where the end wind-
ings themselves are seen to contribute to the working
thrust, the pole pitch had to be increased to four times
the width of the machine. The end-winding factor, being
the ratio of the long side of the diamond to the semi-
width, had thus risen to the value of ,/17. There is no
doubt therefore that for velocities higher than 1200 m/s
the tubular motor with its total absence of end conduc-
tors is the obvious choice.

References 2 to 5 all propose the use of tubular
motors. In particular, Reference 4 claims to have ‘demon-
strated orthogonal coil technology (AC) at 1 km/s and
160 g'. Launchers for such velocities clearly involve very
high values of acceleration and therefore would appear to
involve transient behaviour of induction motors. The
combination of an accelerated field system and time-
transient operation suggests that aimost any but the most
complex theoretical approach is unlikely to achieve any
kind of accuracy.

The approach adopted here aims to make at least a
first-order approximation to what might be expected,
since the very nature of the problem of obtaining
maximum possible speeds involves the use of parameters
that lend themselves to simplified treatment. For
example, it is proposed to use secondary conductor so
thin that skin effect is virtually eliminated, for the
obvious reason that to involve secondary skin effect is to
include relatively inactive mass in the secondary which
reduces the acceleration. Attaining maximum acceler-
ation is one of the main objectives in this type of
launcher.

Skin effect could be said to be another way of describ-
ing secondary leakage effects. In the absence of skin
effects the secondary appears as a pure resistance and
there is zero secondary time constant.

Short-secondary machines must essentially have
parallel-connected primaries so that the flux is forced at
all points {7]. By maintaining a condition in which the
secondary conductor has a limited effect on the current
drawn from the supply, the effect of primary leakage
reactance is limited to the importance of the time needed
to attain the necessary flux prior to the arrival of the
missile.
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Finally, by making the secondary acceptably long,
transient secondary edge effects are also eliminated [8].

2 Basic tubular motor: the ‘Jumping Ring’

In tubular motor technology there is nothing simpler
than a single-coil primary and a single-turn short
circuited secondary. This primitive motor, known as the
‘Jumping Ring’ and shown diagrammatically in Fig. 1,
had its origins in 1882, six years before Tesla’s invention
of the rotating induction motor.

AC supply

Fig. 1  The ‘Jumping Ring’

Both primary coil and secondary conducting ring are
threaded on an extended iron core. The magnetic circuit
of such a system is remarkably good, being equivalent to
a closed iron ring with only a very small airgap [9].
When an alternating EMF is applied to the primary with
the secondary ring lying on top of it, the latter experi-
ences a very large repulsive force. Because of the quality
of the magnetic circuit it is easy to apply sufficient
current to saturate the iron core. At this point one
obtains virtually the maximum steady-state force on the
secondary ring and the height at which it floats cannot be
increased substantially by increasing the voltage. But
transiently the situation is quite different.

In the case of one particular example of this appar-
atus, an applied voltage that was sufficient to saturate the
core was found to eject the ring vertically to a height of
4 m. The applied voltage was then increased some six
times and the ring was ejected to over 20 m. But then the
accelerating force has been exerted during the first
fraction of the first halfcycle of the supply. The induced
EMF was solely the result of rate of change of flux (as, of
course, Faraday originally pointed out) and the second-
ary was never concerned with the subsequent saturation
of the core and the huge primary current that then
flowed. It is not difficult to take the next step in the
Jjumping ring sequence and remove the iron core.

Physical theory predicts that the force between
oppositely flowing currents in infinitely thin wires is
inversely proportional to their separation and that there-
fore when in contact the force is infinite. What happens
to the flux in such circumstances is largely speculative,
indeed preoccupation with where the flux goes in such a
topological situation can be a very unprofitable exercise.

Experimentally, this simple form of a single-layer
‘pancake’ primary coil and a thin foil secondary was used
by Russian experimenters, who in 1977 claimed to have
achieved 4.9 km/s from rest in a distance of 3 mm [10],
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representing an average acceleration of 4 x 10® g. On the
face of it, continued acceleration at this rate would
achieve 20 km/s in 5 cm from rest. But, of course, the foil
ring was vapourised. The levels of current and flux
densities during the action can hardly be imagined. And
3 mm virtually took the secondary out of range of the
primary, which is why single-coil and single-turn second-
aries are not necessarily acceptable as coil guns, for the
secondary must pass through a series of primary coils
and the secondary is only tightly coupled magnetically
when it is exactly opposite a primary coil. Such consider-
ations lead directly to the important question of the
‘goodness factor’ [11] of a tubular motor.

3 Tubular motor theory

In conventional induction motors the gap flux from one
half of a pole passes through the core. In short primary
machines, however, especially in those with parallel con-
nected primaries, standing waves are known to occur [7]
and it must therefore be assumed, for the worst case, that
the relationship between the pole, or gap, peak flux
density B, and the core flux density B, is the result of
considering the whole of the flux from one pole of the
primary (2mrp) B, to pass through the core whose
maximum sectional area nr? contains B, . Thus

B, = B.(r/2p)

where p is the pole pitch. The mean length of the portion
of the magnetic circuit along the core of a ironless motor
is a pole pitch, its area basically nr?, giving it a reluct-
ance p/arfu,. The only bonus in using a tubular motor is
that the reluctance outside the primary is relatively small
in the absence of any iron, varying from an equivalent
airgap of p/n, when the ratio of r/p is large, to virtually
zero provided r/p is small. Fig. 2, taken from Reference 8,
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Fig. 2  Airgap length against r/p

shows the reduction factor on p/x plotted as a function of
r/p.

The resistance of the electric circuit depends on the
thickness of the conduction tube used. Here, a comprom-
ise is needed between too thin a conducting wall to give a
low enough resistance, and too thick a wall to allow
enough flux to penetrate to the central core so as to
embrace all the secondary conductor. If the central con-
ductor is of thickness t, which is small compared to r, the
length of the electric circuit is 2zr and its sectional area is
pt, so its resistance is p.(27r/pt). Thus, assuming all the
reluctance to be in the core, the goodness factor is

G = [pw/(p/ar*uo)p. 2nr/pt)]
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This is seen to simplify to

G = (wpo/pJrt/2 M

but this is only true provided both ¢ and the thickness of
the primary winding are small compared with both r and

p.
Other factors that would also need to be considered in
detail include:
(a) Skin effect. The thickness of the secondary tube
wall at the high-speed end of the track should not exceed
the skin depth.

é= \/ (2040t/500 1) ()]

where s is the fractional slip and p,,, is the resistivity of
copper just before it melts.

(b) Leakage reactance could prove a serious constraint
on design. It may well impose a limitation on wall thick-
ness and certainly on any radial space between primary
and secondary.

4 Secondary heating in induction accelerators

In the case of a conventional tubular motor with a pure
travelling field, the basic equation for all induction
motors applies, namely

fractional slip = (secondary loss)/(force x sync. speed)

Thus the secondary loss in accelerating from speed v, to
synchronous speed v, is equal to m[v v, —v3/2], a
formula derived in the companion paper [6]. Thus in
accelerating from rest up to synchronous speed against
no load other than its own inertia, the heat loss in the
secondary is equal to its full speed kinetic energy
mv?/2. Doing an energy balance for a secondary of mass
m, specific heat S and melting point T°C, the maximum
speed v, that can be attained without melting is given by
mv%/2=mST. For  copper, S§=2385 JkgC,
T = 1053°C, so that v,, = 900 m/s and this result is inde-
pendent of the mass of the secondary.

It is clear at once that fixed-field speeds are useless for
high-velocity accelerators. The field must be graded in
velocity so that the secondary always finds itself in a field
that is travelling only slightly faster than itself. If, in a
graded field system, the slip is always maintained at a
value s, then it can be shown that the equation is modi-
fied to smvZ/2 = mST, or

s = 25T/(v,)? 3

At first sight this presents no apparent problem. It is
surely possible to grade the field so that the slip is never
more than 1%, which would raise v,, to 9000 m/s, or even
higher for lower values of slip. Actually, it raises a new
and more obscure issue.

If the track length is to be limited, demands for higher
velocities require greater acceleration of the field. This
soon becomes so high that the difference in slip between
one end of the missile and the other is greater than the
permitted value given in eqn. 3. Shrinking the length of
the missile is only possible until its length, in relation to
the pole pitch, brings it into the region where transient
short-secondary effects become prohibitive [8].

For example, consider a tubular motor primary
100 m long, required to accelerate a secondary to
10000 m/s. For constant acceleration this requires
500000 m/s* so that the rate of increase of veocity with
distance at any point along the track is 500000 divided
by the velocity at that point. This, as a fraction of the
speed at the same point is 500 000/v%/m, so that a second-
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ary 20 cm long would experience 10% slip at its one
extremity at the same time as the other was at zero slip,
when its speed was 1000 m/s. To limit this even to 1%
would involve a missile only 2.0 cm long. (Eqn. 3 suggests
that the working slip should only be 1% for 9000 m/s.)
One could accept that one might be able to achieve the
first 1000 m/s in some other way (by chemical propellant,
for example) but this is about as low as one could go
with the initial velocity without reducing the secondary
length to apparently impossible proportions, so here is
the first conflict of requirements.

For now edge effects in linear motors are involved,
particularly in those relating to short-secondary
machines. The problem is complex. Basically, the
phenomenon is illustrated in Fig. 3 which shows the

e

Fig. 3  Current distribution in a solid cylinder of secondary conductor
which is short in relation to pole pitch

current distribution in a solid cylinder of secondary con-
ductor which is short in relation to pole pitch. The
current density builds up at each end owing to the edge
transients. Fig 4 shows, effectively, the heat loss plotted
as a function of length/pole pitch.
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Fig. 4  Heat loss as a function of length/pole pitch

Since the values of slip involved are of the order of 1%
or less, it seems reasonable to limit the difference in slip,
between one end of the missile and the other, to the same
value as the working slip in eqn. 3, so that, for example,
were the slip to be 1% for each, the aim would be to
accelerate the field so that the front end of the missile
operated at 1.5% and the back end at 0.5%. The mean
thrust would approximate very closely to that on a
missile with a slip of 1% all along its length.

If it is argued that this leads to overheating of the
front end of the missile, due allowance could be made in
the appropriate temperature rise equation. Indeed, with
all the equations developed here, refinements could be
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added for neglected aspects, most of which would lead to
reduced ultimate speeds. It is the prime aim of the paper
to set down only the most basic constraints in a form
simplified sufficiently to give an overall ‘feel’ for the
absolute maxima of velocities attainable by making the
equations capable of being manipulated algebraically,
without resorting to such techniques as complex layer
theory. In this way the general dependency of ultimate
velocities on the various parameters may be more readily
determined.

It is clear that secondary cylinders should not be
reduced in length below p, in which case, in the worked
example above, a 2.0 cm pole pitch at 1000 m/s involves
a frequency of 25 kHz. Since the pole pitch could not be
increased beyond this velocity, the frequency must ultim-
ately rise to 250 kHz at 10000 m/s, when the skin depth
in copper is only 0.t4 mm. Missiles of this order of wall
thickness are certain to be crushed inwards by the repul-
sive normal forces, at less than the specific accelerating
force that is required.

It could be argued that the fault lay in having decided
to use a constant acceleration, which resulted in the dif-
ferential slip being given by acceleration/v? per metre,
with acceleration fixed at v2/2L, where L is the track
length. This results in the length of the secondary (and
therefore the pole pitch) being given by (v/v,)? 2Ls, where
s is the fractional slip. If instead therefore we elected to
keep (dv/dx) constant (= C) we would have v,, = CL, so
that the differential slip in a missile of length [ is

s = l(dv/dx)/v = CLfv, or I=(v/v,)Ls

which means that for a 1% slip, and a 1.0 cm missile one
could use the track down to 100 m/s, or have a 10cm
long missile down to 1000 m/s. However, the required
acceleration now increases linearly with v and reaches
va/L at the high-end speed. This is double the require-
ment of the original case, but it is a relatively small price
to pay for achieving a gain of five in the relationship
between s and 1.

Pursuing the argument even further, and keeping
(dv/dx)(1/v) constant would enable virtually the whole
track to be used, starting from rest in a field of fixed
speed v, until 1% slip was attained, the field thereafter
accelerating at constant (dv/dx)/v up to v, such that
log (v/vo) = sL/l but at the expense of making the
maximum acceleration equal to svZ/l so that Uy =
10000 m/s and L = 100 m, makes the maximum acceler-
ation for a 1 m-long secondary and 0.01 slip the same as
for the constant (dv/dx) case. However, a 1 m-long sec-
ondary would only allow a starting speed of 10000/
& = 3678 m/s, which is much too fast. On the other hand,
a 0.1 m-long secondary would reduce v, to the unneces-
sarily low value of 0.453 m/s at the expense of maximum
acceleration of 107 m/s. Nevertheless, the constant (dv/
dx)/v technique has allowed a certain flexibility of choice
over the length of the secondary and allows other factors,
such as the skin depth and the crushing forces have their
say in what otherwise might well have been impossible
requirements.

5 Basic heating constraints

Our relatively simple example may now be generalised by
setting out all the constraints as equations. The constant
(dv/dx)/v restriction works out as follows.

The maximum acceleration is A,,,, , where

Ags = 5031 @
218

The minimum field velocity
vy = v, & L %)

where s is the slip derived from eqn. 3. It is now necessary
to specify how low v, must be so that the acceleration
from rest up to v, does not seriously add to the second-
ary losses that are about to be incurred during the
remainder of the journey. It is reasonable to allow these
initial losses to be 10% of those in the accelerated part of
the field so that mv2/2 = 0.1 s v2/2, or

Vo/Um = \J(0.15) = (1/0,),/02 ST 6)
Combining eqns. 3 to 6 gives

I =2STL/v2 log (v,,/v0) W)

Ay = (v2/L) log (v,,/ve) = 2ST! (8)

6 Acceleration and crushing forces

To eqns. 1 to 8 must now be added an equation for the
specific force B, x J,, where J, is the secondary current
loading. Now B, = B,(r/2p) and B, = p, Jgs, where J, is
the magnetising current loading, which is itself related to
J, as J, = sGJ, and to the primary current loading J, as
Ji =J3 + J2. Thus

specific force = pg J2r/2psG 9)

The acceleration is the total force divided by the second-
ary mass. The total force is the specific force multiplied
by the surface area of the secondary tube while the mass
is the thickness of the tube multiplied by its density and
its surface area, so that the acceleration is

A= py Jir2ptDsG (10)

and since (dv/dx)/v is to be kept constant, acceleration is
proportional to »®> and will be maximum A, when
U = U, and minimum at A4,, when v =1v,, so that
Ao/ Ay = (v0/0n)".

The next equation relates the radial electromagnetic
pressure g JJ, to the mechanical strength, thus

E = poJ,Jy(r/2t) (8))]

At this point it is vital to note that the eqns. 10 and 11
contain several factors in common, indeed if J, =
J /(1 + 1/5*°G?) eqns. 10 and 11 can be combined to give

A= E\J{s*G* + 1}/pD (12)

In the quest for higher and higher speeds in shorter and
shorter distances, eqn. 12 is a clear indicator of the prob-
lems ahead. For a fixed value of sG (which itself is only
mildly ‘negotiable’), A, o« 1/p. Progressive reduction of p
raises warning signals about two quantities, leakage flux
and magnetising current, both of which are vitally
dependant on the dimensions of the magnetic circuit.

7 Primary magnetic circuit

In calculating primary related quantities it is assumed
that the fundamental rule for short secondary linear
motors is observed in that the primary will be parallel
connected.

Precise evaluation of the ratio of the leakage reactance
to resistance ratio for the primary of a tubular motor is a
complex calculation. But in the interests of producing
simplified equations that show the dependence of velocity
on fundamental parameters without sacrificing too much
accuracy, reference is made to the simplified electromag-
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netic system shown in Fig. 5. The primary is shown as a
single layer of square-section conductors of thickness y
separated from the secondary tube by an annular space
of radial dimension d. The reluctance of the magnetic
circuit is considered to be made up of two parts:

(a) the path between the primary and secondary con-
ductors, which is basically of length p and of area 27r,d,
and

(b) the path outside the primary winding can vary from
an equivalent airgap of p/n to zero as shown in Fig. 2. It
is already clear that in this application, ratios of r/p are

0o000ooo0nOoooooo
Fig. 5  Simplified electromagnetic system

more likely to lie in the region of 0.1 than in higher
values and therefore to a very close approximation, the
only reluctance is that inside the primary winding. If
there are N turns per sole pitch the ratio X/R is
(0ito/peiaNdy?/p). Ignoring any insulating space
between primary turns p= Ny, whence X/R =
@pho @Y/Peota . It can be argued that the primary could be
multilayered in an attempt to alleviate the skin-depth
limitation but the fact remains that the presence of skin
effect at all in a single conductor indicates that the outer
layers, if further from the interface surface than skin
depth, are producing excessive amounts of leakage flux.
Thus, substituting for @ from eqn. 2 (modified only by
removing the slip term s since the primary winding is
considered now) simplifies this to

X/R =2dJy 13)
Writing X/R = K, eqn. 13 becomes y = 2d/K.

8 Fundamental limits on v, and L

The modified eqn. 2 then shows the maximum value of f,,
is Pcou/n#o yz’ or

S = K2pota/4md* 1y (14
whence p = v,,/2f,, or
p= 27“12#0 vm/szmM (15)

Now eqn. 7 shows that the missile length I is inversely
proportional to vZ, while eqn. 15 shows p proportional
to v,,. Since ! cannot be less than p, there is a limit on v,,
set by eqns. 7 and 15 which is

O 108 (v, /06) = 2STLK? oy [2mpt d2 (16)

This limitation is not likely to be as severe as some
others. For example, at K =6, d = 2 mm, L = 1000 m,
v,, = 4000 m/s, but if L is increased to 7000 m, the limit
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on v,, is raised to 9000 m/s. Using eqns. 8 and 12 for 4,,,
and substituting for p from eqn. 15 gives

Vn 108 (U /V0) = LEKpota /2nDpto d°\/(s°G* + 1) (17)

This constraint alone sets a limit on what can be asked
for by way of possible values of v,, and L. For example,
were a limit to be set on X/R at say 6, and were it to be
considered practical to reduce d to a minimum value of,
say, 2 mm, then v, is limited to 2520 m/s. The extent to
which the maximum value of v,, is sensitive to d and K
may be appreciated to a first approximation by assuming
that A4,, is proportional to v2/L from eqn. 8 (ignoring the
log term as not being very potent), and by assuming the
sG value constant for the moment, it follows that
v,, is proportional to J[L{K/d}*]. K and d are therefore
more potent than is L.

Fig. 6 displays what may be achieved in the way of
ultimate terminal velocities. Among the features that it

1 i 1 1 1 1 1
10000 14000 18,000 22,000
L,m

1 1
2000 6000

Fig. 6  Sensitivity of v, tod and k

illustrates are the reasons why the Russian experiment
was able to achieve accelerations of the order of 5 x 108,
for they began with virtually metal-to-metal contact
which just for that instant made d equal to zero.

9 Geometry of secondary member

The previous paragraph dealt essentially with matters
relating to the primary, whereas G-related quantities tend
to be secondary dominated. Eqn. 1 was derived under the
assumption that the reluctance of the core dominated the
reluctance of the magnetic circuit and this may not
always be the case. Just as with the calculation of X/R,
the exact evaluation of G is a complex affair so again the
problem for a thick-walled cylinder is simplified in the
interest of being able to outline the basic principles of
design explicitly. To this end, the magnetic circuit is as
shown in Fig. 5 and is to be divided into three separate
regions: -

Region i is the air space outside the primary winding
which is equivalent to an airgap of length p/z and area
2nrp,wherer=ry +t +d + y.

Region ii is the distance from the outside surface of the
primary to the inside surface of the secondary, a length of
(¥ + t + d), which is of area 2zr, p. Where r, is the mean
radius between r and r,, so ro=[ro+ @ +d+yy2].

Region iii is the core proper, of length p and area nr2.
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Thus the ratio of the reluctance outside the windings to
that in the core is

Rt/ Roore = 13/21p(ro + £ + d + ) (18)

while the ratio of reluctance through the windings to that
in the core is

R/ Reore = 203t + d + y)/p*[ro + (¢t + d + y)/2] (19)

and it is necessary to keep a check on whether each of
these ratios remains small for the various values of v,
and L that are being tested.

9.1 Secondary dimensions
When it comes to deciding the wall thickness ¢ of the
secondary there are two constraints that may limit its
maximum value, both concerned with skin effect:

(a) it may be limited by the slip frequency induced i.e.
by sfw

(b) it may be limited by the standstill frequency f; at
the very start of the whole launch, where f, = (vo/v,)f,,-

Now sf,, = 28Tf,/v2 = ST/pv,,, from eqn. 3, while f, =
f,,,/v,,,\/(ST/S) = 1/p\/(ST/5), from eqn. 6. Because the
skin depth under (a) is dictated by the hot resistivity,
whereas that under (b) relates to the cold resistivity, the
two constraints are related to the value of v,, such that

vm = pcold\/ZOST/phot .
condition (a) applies if v,, < 236 m/s
condition (b) applies if v,, > 236 m/s

Taking condition (a) first, eqn. 2 states that > =
Phot/ Tfm Slo - Substituting for s from eqn 3 gives

12 = Vg Phor/STpip 0y, (20)
Substituting for w,, from eqn. 14 makes
t= (2dvm/K)\/[phal/STpmld] (21)

Eqns. 10 and 11 do not enable r to be calculated yet,
since both contain J2r/t as a common factor. To evaluate
r one must turn to eqn. 1 and make the initial assump-
tion that the core reluctance dominates, so that

G = (4o 0/paon)r51/(2ro + 1)] (22)

It is now proposed to put sG = 1 on the grounds that to
make sG < 1 is to incur severe penalties on input power
factor and high values of J,, whereas to make sG> 1
imposes severe limitations on 4,, from eqn. 12. (With
sG =1, A,, is only reduced by a factor of \/ 2 compared
with its value at sG = 0). Eqn. 22 gives

r5t/Q2ro + 1) = vp Puet/ 28T o

The similarity between the right-hand side of this equa-
tion and that of eqn. 20 is in part owing to the fact that
both equations derive from reactance to resistance cri-
teria i.e. that X/R = constant and G = X,,/R = 1/5. Com-
bining the two equations gives the simple relationship

ritf2ro + t) = t2/2, whence ro = (1 + 32 23)
When condition (b) obtains, eqn. 20 is replaced by
tz = 20," Peola /“0 Vg 0y, (24)

and eqn. 23 is replaced by rit/2ry+ )=
t2/2{0 Pror/[Peotar/20S T}, which makes

ro = (AY2)[1 + J(1 + 2/4)] 25)

where A = v, p4o/Proian/20ST. Now that the missile
dimensions are obtained with the assumption that the
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core reluctance dominates, one can return to eqns. 18 and
19 and check on the validity of the assumption. Substi-
tution of the values appropriate to v, = 2600 m/s, for
example, shows that both #,,, and 2, contribute less
than 1% to the core reluctance and since r,, p and ¢ are
each proportional to v,, the same will be true for all
higher values of v,,.

All of these calculations of missile dimensions were
made without reference to the crushing constraint, eqn.
11. Again using sG = 1, one can obtain a value of J,,.
First, from eqn. 23, J,, = 1.63 x 10’ A/m. From eqn. 25
the value of J,, is a complex function of v, since J2 is
proportional to 1/[(r,/t) + 0.5] and ry/t is multiplied by
the factor 4 + /(A% + 24)/(1 + /3). The value of 4 is
given by v, Phoi/Peoiar/20ST = 0.00424p,,. As an example
of the changes introduced by using condition (b) as
opposed to condition (a), if v, = 3000 m/s, J, = 8.2

x 10° A/m, whereas if v, =5000m/s, J,=6.5
x 10° A/m.

10 Primary current loading

It remains to check that it is possible to supply primary
current loadings appropriate to the values of J,, derived
from all the preceding equations and this will involve the
temperature rise in the primary winding, a quantity that
has been neglected until now.

The temperature rise T, is related to the current
density J and to the energisation time # by the equation

J*t = ST,D/p.pua (26)

derived in the companion paper [6]. p.,, is the mean
resistivity of copper between 20 and 200°C; the latter
temperature rise is assumed here for the purpose of the
worked example. The absolute minimum energisation
time is that for the secondary to pass any one point on
the primary at the maximum speed ie. l/v,. On the
assumption that generally it will be possible to reduce !
to a pole pitch, the minimum energisation is therefore
half a cycle, although it is obviously necessary to add
several cycles to this to allow for the setting up of the flux
as dictated by the value of K. The maximum current
loading J ;.. is then given simply by Jy, so that

Juw=Jdy/JI1 + (1/sG)1] @27

A worked example gives an immediate guide to the order
of the quantities involved. For a halfcycle of the supply at
Sm» J = 3.62 x 10'° A/m?, so that for a primary thickness
of 1.67mm, J,, = 6 x 107 A/m. This is an order of ten
times the value found necessary for v, = 5000 m/s,
indicating that the switch-on time can be increased by
\/ 10, ie. from a halfcycle to 1.5 cycles. Even this is not a
‘luxurious’ amount of time to allow for flux buildup, but
at least the calculations in the last Section have shown
that this is a diminishing problem as v, is increased.

It remains to check whether the same thickness of
primary winding will suffice at the slow speed end of the
track were v =uv,, for theoretically it is possible to
increase its thickness here from y to y./(vn/ve), if neces-
sary, to increase J,. However, sG/sG,, = ©g Duot/ O Peota
so that for sG = 1, Gy = Uy, Puot/Peotgn/ 20ST (numerically
Gy = v,,/236). Hence, 5Go = puorn/(ST/5)/Vpy Peotan/20ST
(numerically sG, = 3377/v,,).

The numerical calculations are interesting in that they
show for quite high terminal speeds, up to 3377 m/s, sG,
is actually > 1. For higher speeds sG, will deteriorate,
but remember that because of the technique of making
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(1/v)dv/ds constant, Aocv? oc J* so that in particular
J20/d 1m = Vo/Um. Also, Jyo/Jze=+/(1 +1/s*G?) and
Jimldm = /2. Thus

J 10/ 1m = Wo/Va[0.5 + 1007 p2,4/STp,]

Numerically, this becomes  J,o/Jy, = \/ [0.0035

+ (22/v,)*] which is >1 for all high values of v,, and
there is never any reason to increase the thickness of the
primary winding at the low-speed end of the track.

11 Missile mass

Making reasonable approximations it is possible to
express the mass of the secondary explicitly, thus:
mass = 2n(ry + t/2)tD. Examination of the order of the
quantities in eqn. 26 shows that very little error is made
in writing r, = At. Substituting for t* from eqn. 25, f,,
from eqn. 14 and /(=p) from eqn. 15 and simplifying
gives

M = 8n*(d/KY(uoD/S TN phor/ p 21203, (28)

Numerically, M = 1490 (d/K)*v2 and to set the level, for
U,y = 3000 m/s, the missile mass is approximately 0.5 kg,
rising to 148 kg at 20000 m/s.

12 Conclusions

It is clear that velocities of 20 km/s can be reached by
induction, but only in large sizes and at the expense of
enormously long tracks. The power levels to achieve such
velocities in a mass (for example) of 150 kg are of the
order of 6000 GW and kinetic energy of 30000 MJ.

Eqns. 1 to 28 enable ultimate velocities by induction
to be evaluated for the first time in terms of a given track
length and missile mass. These velocities are dictated by
the five properties of copper listed in Section 14 and by
the permeability of free space, by the power factor of the
primary and by mechanical clearance. There is, of course,
no better metal than copper.

A number of workers in the field of electromagnetic
launchers have written about the possibility of shaping
the flux wave into more advantageous forms than those
of sinusoidal space distribution. There have been pro-
posals to produce a shaped pulse of flux that chases the
secondary down the barrel. This technique is very similar
to that proposed here except that it is essential that the
‘pulse’ should consist of a short burst of sine waves,
otherwise the temperature limitations on the secondary
are aggravated, for a complex travelling field, where the
spatial waveshape is nonsinusoidal, can be shown to be
equivalent to a set of travelling fields superposed, whose
speeds form part or all of a Fourier series. Whichever
speed dictates the secondary speed, and is therefore to be
seen as v, in (1/2)mv?, this field itself is 50% energy effi-
cient from rest up to synchronism, (better for smaller
speed ranges) but all the other fields are proportionally
worse. Elliott reports [2] one tested system as having a
secondary ohmic loss 1.9 times that of a sinusoidally fed
system.

The work in this paper is essentially concerned with
electromagnetic constraints on coil guns. Mechanical lim-
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itations and power supplies are additional subjects only
touched marginally here. For example, the results dis-
played in Fig. 6 show the dependence on the dimension d
and on the X/R value for the primary winding. Eqn. 17
shows how beneficial it would be to increase effectively,
the value of E. One might, for example, consider having a
solid secondary, at the expense of increasing the missile
mass by a large factor (~r,/2t), but since rq oc 22 and
t oc v}/2, this effectively replaces v2, by v* on the left-hand
side of eqn. 17, which is a high price to pay. On the other
hand, it could be argued that what is needed is to fill the
core with a relatively light material that is incompress-
ible, such as water! The combined effects of the relative
thermal expansions of water and copper, the effect of
pressure on the boiling point of water and the fact that
the low thermal conductivity of water will only allow an
extremely thin layer of the water in contact with the
copper to attain the melting temperature of copper are
extremely complex. There is obviously scope for a great
deal more work to be done.
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14 Appendix

The important symbols in the foregoing equations and
their values for copper are as shown below:

S = specific heat of copper = 385 J/kg, °C

p = resistivity:
Prar = 21.3 x 10® ohm-m (just before melting)
Peota = 2.13 x 1078 ohm-m (at speed v,)

D = density = 8.9 x 10 kg/m*

T = melting point = 1053°C

E = yield strength = 2.2 x 10® N/m?

bo = free-space permeability = 4z x 10”7 h/m
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